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PREFACE

This report contains the results of a research program to
investigate the aerodynamic behavior of a helicopter operating
in the low-speed flight regime, particularly in the NOE (nap-
of-the-earth) evasive mode. The effort consisted of reducing
and analyzing the existing AH-1G flight test response data
acquired for simulated NOE maneuvers under Contract DAAJO2-73-
C-0105. This program was conducted by Bell Helicopter Textron
(BHT) for Applied Technology Laboratory (ATL), US Army Re-
search and Technology Laboratories (AVRADCOM), from March 1977
to March 1979 under Contract DAAJO2-77-C-0022.

The ATL technical direction was provided by Robert P. Smith.
This program was conducted under the technical direction of J.
L. Tangler, Project Engineer, and J. D. Kocurek, Group Super-
visor, Basic Technology Aerodynamics Development. Technical
assistance was provided by N. K. McMennamy.
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INTRODUCTION

The use of a helicopter in a combat role can require exten-

sive operation in a low-speed, terrain-following flight region.
This technique is used to minimize exposure of the helicopter

to enemy detection and hostile fire. Called nap-of-the-earth
(NOE) flight, this regime also coincides with the forward flight
transition region which extends from hover to 60 knots.

The transition region shares the complexities of aerodynamic

environment normally associated with either hover, level flight

cruise, or maneuver. As in hover, an accurate prediction of ;
the blade loading is dependent on an accurate determination of !
the wake-induced inflow. The wake structure and behavior thus

dictate not only the induced power associated with the inflow

field, but also, through blade loading, the power required to |
overcome airfoil profile drag. Further complicating the prob-
lem in the low-speed flight region are the numerous blade/ :
vortex interactions that occur. As in forward flight or maneu- g
ver, the nonsteady character of the wake in proximity to the
rotor in transition further complicates the aerodynamic en- w4
vironment to the extent that a conclusive assessment of its !
impact on rotor performance, loads, and vibration is indeed a
formidable task. However, such assessment is an integral part
of improving the predictive methodology in those areas.

X

S 0 PR

To provide the needed insight as to how the flow field about
the rotor varies for both hover and forward flight conditions,
including the NOE region, several Bell Helicopter Textron
(BHT) and Army-sponsored research programs have been under-
taken. Beginning in 1965, the first of these (Reference 1)
studied the boundary layer and flow field of a hovering rotor.
This effort indicated the need for special instrumentation to
measure and record the helicopter rotor's flow environment.
Through follow-on research programs, the necessary instrumen-
tation needed to survey a rotor's flow field was designed and
tested. References 2 and 3 document the development of a
blade surface-flow measuring sensor, known as the boundary

T AT
ot s AT

!Tanner, W. H., and Yaggy, P. F., "Experimental Boundary Layer
Study of Hovering Rotors, " presented at the 22nd Annual
National Forum of the American Helicopter Society, Washington
D.C., May 1966.

2Tanner, W. H., and Van Wyckhouse, J. F., "Wind Tunnel Tests
of Full-Scale Rotors Operating at High Advancing Tip Mach
Numbers and Advance Ratios," Bell Helicopter Textron,
USAAVLABS TR68-44, US Army Aviation Materiel Laboratories,
Fort Eustis, Virginia, July 1968, AD 674188.

3Burpo, F., and Tanner, W. H., "Two-Dimensional Tests of Ad-
vanced Instrumentation for Rotors," Bell Helicopter Company
Feport Number 606-099-001, Fort Worth, Texas, December 1968.
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layer button (BLB), which provides the capability for mea-
suring both flow velocity and direction. Also discussed in
these references is the development of a leading-edge stagna-
tion point sensor comprised of an array of hot-wire anemome-
ters to relate the stagnation point to the local angle of
attack.

In 1969 a UH-1lH main rotor instrumented at one radial station
with BLBs, hot-wire sensors, and static pressure transducers
was tested in the NASA Ames 40- by 80-foot wind tunnel.* An
important finding of this test was that differential pressure
measurements between upper and lower surface mask the detail
of the aerodynamic environment. These tests established the
need for separate, absolute pressure transducers on the two
surfaces.

In 1971 a whirl stand test demonstrated the feasibility of
using a time division multiplex system to transfer large
quantities of aerodynamic data through a space-limited slip
ring.® In the same time frame, subminiature signal condi-
tioners and voltage controlled oscillators became available,
permitting BHT to develop an improved frequency division
multiplex system that provides improved signal-to-noise ratios
and fewer slip ring elements.®

Using the technology previously developed, a comprehensive
flight test program was conducted by BHT under US Army sponsor-
ship during the period of June 1974 to April 1976. A heavily
instrumented AH-1G helicopter rotor was flight tested through
a wide range of operating conditions. The objective of this
investigation was to record the rotor's aerodynamic environ-
ment, associated controls positions, and airframe response.

1Shockey, G. A., and Bowden, T. H., "A Wind-Tunnel Investiga-
tion of the Aerodynamic Environment of a Full-Scale Helicop-
ter Rotor in Forward Flight," Bell Helicopter Textron,

USAAVLABS TR 70-35, Eustis Directorate, US Army Air Mobility
R&D Laboratory, Fort Eustis, Virginia, July 1970, AD 875744.

SShockey, G. A., and Bowden, T. H., "Evaluation of an Advanced
Instrumentation System for Helicopter Rotors," USAAMRDL TR
71-72, Eustis Directorate, US Army Air Mobility R&D Labora-
tory, Fort Eustis, Virginia, February 1972, AD 740773.

®Goodman, J., "Buildup and Test of a Rotating Frequency Divi-
sion Multiplex System for Data Transmission from Rotating
Systems," Bell Helicopter Company Report 0072R-001, Fort
Worth, Texas, 5 January 1972.
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The flight conditions can be divided into three categories:
basic operational conditions, NOE conditions, and those associ-
ated with main rotor noise measurements. The analog flight
test data were digitized onto 175 tapes. These tapes consti-
tute a library of well-cataloged flight test data ready to be
analyzed and compared to present aerodynamic and dynamic
performance prediction methods. A data management program
recently developed under Contract DAAJO2-77-C-0053 facilitates
data extraction, processing, and reduction.’” The data manage-
ment program consists of a variety of computer programs that
can present pertinent parameters in various formats, including
surface and contour plots.

The purpose of the research described herein was to investi-
gate the aerodynamic behavior of a helicopter operating in the
low-speed, NOE flight region. The effort consisted of reduc-
ing the existing AH-1G flight test data for these flight
conditions. The analysis included comparisons between pre-
dicted and measured blade loads with special emphasis on wake
induced effects.

Appendix A presents chordwise force coefficient and pitching
moment data versus azimuth for hover, 10, 20, 30, 40, and 50
knots at a gross weight of 8100 pounds. Normal force coeffi-
cient data is presented only for IGE hover because data for
the other above-mentioned cases are presented and discussed
in the text.

7Philbrick, R. B., and Eubanks, A. L., "Operational Loads
Survey ~ Data Management System," Volume I - User's Manual,
Bell Helicopter Textron, USARTL TR 78-52A, Applied Technology
Laboratory, US Army Research and Technology Laboratories
(AVRADCOM), Fort Eustis, Virginia, January 1979, AD A065129.




TEST EQUIPMENT

The test equipment consisted of an AH-1G helicopter, a set of
modified main rotor blades, numerous types of transducers, a
rotating FM frequency~-division multiplex, a stationary FM
multiplex, and a shipboard tape deck.

HELICOPTER AIRFRAME

The airframe, shown in Figure 1, was a bailed US Army AH-1G
helicopter, Serial Number 20391. In addition to the standard
equipment 1n the helicopter, the following items were in-

I stalled:

A 28-track, AR-728 tape recorder, a stationary multiplex,
a telemetry (TM) transmitter, and power supplies, all
mounted on an equipment rack and installed in the ammo
bay.

- Twenty-two accelerometers mounted on the fuselage.
- A rotating multiplex mounted on the trunnion.

- A nose boom mounted forward of the ship for airspeed
measurements.

- A hot-wire fault indicator mounted in the cockpit.

MODIFIED MAIN ROTOR BLADES

The "gloved blade" approach was used to maintain a structur-
ally sound rotor and a smooth aerodynamic surface. All rota-
ting transducers and associated wiring were embedded within
the glove contour. The glove extended from the root-end
doublers to the blade tip and consisted of an aluminum leading
edge and thin fiberglass afterbody skins supported by a Nomex
honeycomb core, as seen in Figure 2. The leading-edge abra-
sion strip was stretch-formed aluminum alloy, using the stand-
ard blade as the stretch fixture. The glove skins were made
of pre-preg fiberglass cloth approximately 0.008 inch thick
and bonded to 0.10~-inch-thick Nomex honeycomb prior to instal-
lation on the blade. Five aluminum sleeves housing the trans-
ducers and sensors were wrapped around the airfoil at the se-
lected measurement stations. These sleeves mated with the
leading-edge strip and the afterbody skins. The sleeves were
roll-formed from aluminum sheet. Two aluminum attachment
strips were bonded to the blade at each station and served as
nut plates to which the sleeves were fastened. After the
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blades were painted, the aluminum instrumentation sleeve as-
semblies containing the absolute pressure transducers, the
BLBs, and the hot-wire sensors were fastened to the attachment
strips with flat-head machine screws. The final glove thick-
ness was 0.130 inch. The trailing edge was extended 1.5
inches, terminating in a thickness of 0.10 inch. Table 1
gives the parameters for the production AH-1G blade and the
gloved instrumented blade.

ABSOLUTE PRESSURE TRANSDUCERS

The aluminum sleeve assemblies, mounted around the contour of
the blade at each of the five stations, house the transducers.
Each assembly consists of three main parts: outer sleeve,
transducer chamber, and gasket. The outer sleeve 1s a piece
of 0.025-inch, 2024-T3 aluminum sheet rolled to the blade con-
tour. The appropriate static ports and attachment holes are
drilled in this sleeve. The transducer chamber contains the
pressure transducer cavity milled on the top side. It is at-
tached to the underside of the outer sleeve with six counter-
sunk machine screws. A soft rubber gasket seals the attach-
ment between the transducer chamber and the outer sleeve.
Details of this assembly are shown in Figure 3.

One~hundred-ten subminiature absolute-pressure transducers were
used to measure static pressure on the upper and lower airfoil
surfaces. Figures 4-a through 4-e identify locations and
pressure ranges for blade stations 40, 60, 75, 86.4 and 95.5
percent radius, respectively.

Pressure transducers are concentrated at the outboard radial
stations to record the major pressure peaks and the important
shock formations. The 52 pressure transducers located at the
two outboard stations are recorded on the 400-Hertz response
channels. Hence, events occurring within approximately five
degrees of change in rotor azimuth can be measured. At a
given station, the chordwise distribution of transducers on
the upper and lower blade surfaces is the same.

DIFFERENTIAL PRESSURE TRANSDUCERS

The boundary layer button (BLB), a pressure measuring device,
is used to measure flow direction and magnitude on the upper
and lower blade surfaces. The BLB consists of two total pres-
sure tubes and a static port, as seen in Figure 5. Each of
the total pressure tubes is connected to the top of a dia-
phragm of the temperature-compensated, subminiature differen-
tial pressure transducer. The backsides of the diaphragms of
the two transducers are connected to a common static port.

21
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TABLE 1. COMPARISON OF ROTOR PARAMETERS BETWEEN

STANDARD AND GLOVED AH-1G ROTORS

Standard Gloved
AH-1G Rotor AH-1G Rotor
Stretched, Stretched,
Airfoil Section Slab Sided, Slab Sided,
NACA 0012 Gloved, 0012
Rotor Radius, ft 22.0 22.0
Blade Chord, in. 27.0 28.63
Trailing Edge Extension, in. - 1.5
Airfoil Thickness, in. 2.52 2.78
pirfoil Thickness Ratio, % 9.33 9. 71
Leading Edge Radius, 1in. L2239 1.596
Aspect Ratio 9.78 9.22
otor Solidity 0.0651 0.0690
Linear Twist, deg -10.0 -10.0
?recone, deg 2:75 2075
Hub Teetering Teetering

22
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MAXIMUM ANTICIPATED
PRESSURE IN PSI *

8 CHORD| US | LS us Ls
1 1 8 20 15

3 2 9 20 15

8 3 10 20 15

25 4 i1 10 10
45 5 12 = 5
70 6 13 5 S
92 7 14 5 5

* tDeviation from atmospheric pressure

Figure 4-a. Main rotor blade absolute pressure transducer
locations, pressure ranges, and identification,
r/R =0.40.




0 ¥ CHORD 100

MAXIMUM ANTICIPATED
PRESSURE. IN PSI *

% CHORD| US | LS | us LS
1 1 (11| 20 15
3 21121 20 15
8 3334 10
15 414 | 20 10
25 5118 | 10 5
35 6|16 | 10 5
45 T18% ¢ 20 5
55 8 | 18 5 5
70 9 | 19 5 5

92 10 | 20 5 5 |

* tDeviation from atmospheric pressure

Figure 4-b. Main rotor blade absolute pressure transducer

locations, pressure ranges, and identification,
r/R = 0.060.




§ CHORD

MAXIMUM ANTICIPATED
PRESSURE IN PSI *

% CHORD| WS | LS us LS
L ) 2 e 20 15
3 2% 14 20 15
8 3115 20 10

15 4 | 16 20 10
20 S a7 20 10
25 6 | 18 15 S5
35 S 15 5
40 8 | 20 15 5
45 9 | 21 10 5
55 G §. 22 10 5
70 RS 5 =
92 12 | 24 5 5

r/R =0.75.

* iDeviation from atmospheric pressure

Figure 4-c. Main rotor blade absolute pressure transducer
locations, pressure ranges, and identification,

26

.

PO At 1 .




0 % CHORD 100

MAXIMUM ANTICIPATED |
PRESSURE IN PSI *

% CHORD| US [ LS Us 1.s
il T 20 5
3 2 | 16 20 15
8 ) 20 10
15 4 | 18 20 10
20 5|19 20 10
25 6 .20 15 5
35 T2 15 5
40 8 | 22 15 5
45 g 123 15 5
50 16 | 24 15 5
55 Vi e 15 5
60 12 | 26 10 5
70 3lzE ey 10 5
92 14 | 28 5 5

* tDeviation from atmospheric pressure

Figure 4-d. Main rotor blade absolute pressure transducer
locations, pressure ranges, and identification,
r/R =0.864,
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.
’4w
:
[MAXIMUM ANTICIPATED | 3
| PRESSURE IN PSI * H
[z CHORD| US | LS us [ LS %
1 1133 ] 3 15 &
3 2|14 20 15 r
8 3|15 20 10 %
15 4|16 20 10
25 5 | 17 15 5
35 6 | 18 15 5
40 7 |19 15 5
45 8 | 20 15 5
50 9 | 21 15 5
55 10 | 22 10 5
70 11 | 23 10 5
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* tDeviation from atmospheric pressure

Figure 4-e. Main rotor blade absolute pressure transducer
locations, pressure ranges, and identification,
r/R =0,955,
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using two differential pressure transducers.
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Hence, the output of each transducer is dynamic pressure. Us-
ing the dynamic pressure, the velocity magnitude can be calcu-
lated. Each sensor is calibrated for an included flow-direc-
tion angle of 32 degrees. Analyses indicate that the flow
direction excursion will exceed the linear range of the BLB
over certain azimuth ranges for some flight speeds and span-
wise locations.

The sensor's two differential pressure transducers are in-
stalled in a stainless~steel housing consisting of a base
plate, a main body, a gasket, and a total-tube cover plate.
The main body contains the pressure transducer cavities milled
on the top and the static interconnecting ports milled on the
bottom. The base plate is bonded to the lower side of the
main body and serves to close off the static ports. The total
tube pitot cap contains a single static port and two total
tubes silver~soldered to it. The tube orifices are located at
the apex of the triangle formed by the total tubes. The total
tube pitot cap is bolted to the main body with six flat-head
machine screws.

Six BLBs are located at each of the five selected radial sta-
tions. They are positioned at 30-, 60- and 90-percent chord
locaticans as sketched in Figure 6. Anticipated pressure
ranges are shown.

STAGNATION POINT INSTRUMENTATION

Chordwise movement of the stagnation point along the airfoil's
leading edge surface 1s measured through the use of 80 hot-
wire sensors. A higher density of hot wires is placed at the
outboard stations to achieve greater resolution at low angles
of attack. The hot-wire sensor is a temperature-~differentia-
ting device consisting of from 10 to 19 elements. The indi-
vidual elements are mounted on a flexible, 0.004-inch-thick
printed circuit that is bonded to the leading edge of the
instrumentation sleeve. The printed circuit layout is a
series of 0.020-inch-wide lines spaced 0.110 inch apart with
the 0.020 lines running chordwise. Hot-wire elements are
soldered normal to the 0.020 lines in a stair-step fashion at
the chordwise contour positions. Each hot wire is a 0.110-
inch length of special alloy Balco wire of 0.0012-inch diam-
eter. Figure 7 shows the layout of the hot-wire sensor and
its installation on the leading edge of the rotor.

At each station, the hot-wire elements are electrically con-
nected in series, so that the circuit is energized by a single
constant voltage source. Voltage drops across individual hot-
wire elements provide the output signal. In operation, the
wire closest to or at stagnation heats rapidly, producing a
large voltage increase, while other wire voltages are de-
creased by cooling flow, thus accentuating the stagnation wire
signal.
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HOT-WIRE SENSOR

.15 INCH

.075 INCH

SKETCH OF HOT-WIRE ANEMOMETER INSTALLATION

OUTBOARD

Figure 7.

75% ROTOR RADIUS

[ETHTETTHTTT] veper

W “7.075 INCH SURFACE

]
«15

INCH

FJ_ LEADING
EDGE

LOCATION OF HOT-WIRE SENSORS

Installation and location of leading
edge hot-wire anemometer.
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atid 4 for the Ltwo gross weight conditions of 8100 and 5000
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1.1 F? ',“r_‘ Surface Method
CONTOUR ANDL SURFACFE PLOTS FOk THE STEADY-STATE FLIGHTS

Contemr and surface plots of the normal force coefficient for
the steady«state flight conditions of Table 2 were derived
from four radial stations (r/R 0.40, 0.75, 0.8648, 0.955) of
absolute pressure data that i1s averaqged for three continuous
cycles ‘The fifth station (r/R 0.60) was deleted since 1its
intagrated pressure data 18 1n error due to an inoperative
upper sut face leading-edge pressure transducer. The inside
and autaide Limit of each plot 18 bounded by radial station
t/0 = 0.4 and v/l 0.95%%, respectively, with data from sta-
tiona /0 = 0. 7% and /R 0.864 lying in between. Spanwise
interpolation at each azimuth ig through a cubic polynomial.
Fach contour interval on the plots depicts a 0.1 change in the
normal force coefficient,. Two surface plots are presented for
each flight tecord to supplement the contour plot. A side and
front perepective, with teapect to the fuselage, were found to
heat illustrate the thiee-dimensional Cn distribution.
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Hover

Contour and surface plots of normal force coefficient, C for

Nl
four separate hover records are shown in Figures 8 through 11.
Record 685 was recorded at a gross weight of 9000 pounds and
50-foot altitude, whereas record 722 was recorded at a gross
welight of 8100 pounds and in ground effect (IGE). Records 723
and 736 are at the same condition of 8100 pounds gross weight
at 100- and 50-foot altitudes, respectively. Both the 50- and
100-foot altitude cases are considered to be out of ground
effect, which is taken to be beyond one rotor diameter from
the ground. Examination of the hover records shows substan-

tial deviations from the anticipated symmetrical Cy distribu-

tion. Only record 722 comes reasonably close to being symmet-
rical. Any perturbation that alters the inflow through the
rotor disc affects the symmetry of the C,, distribution.
Ambient winds and turbulence, along with recirculation from
both main and tail rotor, are almost always present during
hover and contribute to the asymmetry.

Control-tower-reported winds during these flight records were
in the range of 5 to 8 knots. However, local wind conditions
present when the data are recorded most likely differ from
those reported. Significant wind effects appear to be pres-

ent for OGE hover (Figure 8A). The CN distribution 1s somewhat

similar to that obtained for a 10-knot forward-flight condi-
tion (Figure 12). 1In Tables 3 and 4, it is seen that some
left and aft cyclic control is usually present during hover to
compensate for the tail rotor rolling moment and center of
gravity pitching moment. However, these cyclic inputs only
tilt the main rotor's thrust vector and should have no effect
on the symmetry of the Cyn distribution in the tip-path plane.

Forward Flight 10, 20, 30, 40, and 50 Knots

Upon analyzing the low-speed forward-flight CN distributions

of normal force coefficient (Figures 12 through 21), the
following trends are seen to occur with increased airspeed.
Going from hover to 10 knots, the guasi-symmetric Cn distribu-

tion 1is considerably altered. At 10 knots the magnitude of

the CN distribution increases across the back of the disc to

compensate for the decreases over the front of the disc. The

decrease 1in CN at the front of the disc 1s due to the blade

passing over the preceding blade's vortex, resulting in a
sharp rise in the CN distribution along the leading edge of

the disc.
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270 DEG

OUTSI0E CInIT
0.9s FRACTN OF RADIUS

INSIOE (imgT

0.40 FRACTN OF RADIUS

0.0 oec

DERIVED PARAMETER -

NORMAL FORCE COEFFICIENT
COUNTER 683

GROEE WT 9000 . SHIF nooeL AN-1G
LONG co 196.¢ SHIF 10 20391
'“———-L_\__a .3 CN

————— B———__0.6 cN

Figure 8aA, CN contour plot (OGE hover at 50 feet),
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270 DEG

OUTSIDE LIMIT INSIDE LIMIT
0.95 FRACTN OF RAOIUS 0.40 FRACTN OF RROIUS
0.0 DEG
DERIVED PARAMETER - NORMAL FORCE COEFFICIENT
COUNTER 722 GROSS WT 8100 SHIP MOCEL AH-1G
LONG CG 196 .S SHIP 10 20391
—R— 0.3 CN
--------- B----==--=0,6 CN

Figure 9A. Cy contour plot (IGE hover).
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Figure 9B.
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at 0 degree at 50 feet).
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Figure 12A. CN contour plot (level flight at 10 knots, gross

weight 8100 pounds, altitude 50 feet).
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4 wgight 9000 pounds, altitude 50 feet).
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Figure 15A. CN contour plots (level flight at 20 knots, gross

weight 9000 pounds, altitude 50 feet) .
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Figure 16A. CN contour plot (level flight at 30 knots, gross
weight 8100 pounds, altitude 50 feet).
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Figure 18A. CN contour plot (level flight at 40 knots, gross |
weight 8100 pounds, altitude 50 feet). .
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Figure 19a. CN contour plot (level flight at 40 knots,

gross
weight 9000 pounds, altitude 50 feet) .
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Figure 20A. CN contour plot (level flight at 50 knots,

gross
weight 8100 pounds, altitude 50 feet).
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Figure 21A.

Cy contour plot (level flight at 50 knots, gross
weight 9000 pounds, altitude 50 feet).
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The upwash induced by the vortex upstream of its location

increases the CN while the downwash induced downstream of 1its

location decreases the CN' thus forming a valley in the dis-
tribution.

At 20 knots the tip vortex interaction across the front of the

disc begins to disappear. The CN distribution over the disc

evens out as the loading shifts toward the front of the disc.

At 30 knots the blade loading in the third quadrant begins to

build up midway out the span. In addition, CN approaches a

value of 1.0 over the engine nacelle at r/R = 0.4. This rise
appears to be due to the wake coming off the upper portion of
the sail and the plate surrounding the top of the nacelle.

With a further increase in airspeed to 40 and 50 knots the in-
board blade loading in the third quadrant approaches values
of CN of 1.0 or more. Concurrently, the CN bump over the

engine nacelle begins to diminish. The rapid C,, drop in the

N
region of y = 280 degrees corresponds to a vortex core passage
parallel to the blade span. The vortex induces upwash as the
blade approaches and downwash upon passage. Thus, the inter-
action results in a gradual loading followed by a rapid unload-
ing of the blade.

With an increase in gross weight from 8100 to 9000 pounds, the
gradients become more pronounced for the flight conditions of
20, 30, 40, and 50 knots.

Right and Left Sideward Flight

The CN distributions for right sideward flight (Figure 22)

compare favorably with those shown for 30-knot forward flight
(Figure 16). However, some noticeable differences between
these two flight conditions are seen in Table 3. In right
sideward flight the main rotor power is 16 percent higher

than for the forward flight case. Simple energy methods show
that approximately half of this increase is due to an increase
in equivalent fuselage drag area from 12 square feet (forward
flight) to 150 square feet (sideward flight). Also, with the
rotor's thrust vector tilted to the right the fuselage reaches
an equilibrium roll angle of 3.5 degrees to the right versus
1.4 degrees to the left in forward flight.

Left sideward flight differs substantially from right sideward

flight, as seen in Figures 22 and 23. The difference is at-
tributed to the change in tail rotor thrust direction. In
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Figure 22A. CN contour plot (right sideward flight at 30 knots,
gross weight 8100 pounds, altitude 50 feet).
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Figure 23A. CN contour plot (left sideward flight at 30 knots,

gross weight 8100 pounds, altitude 50 feet) .
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right sideward flight, the tail rotor thrust is in the same |
direction as the main rotor's propulsive force component;

whereas in left sideward flight, the tail rotor thrusts in

opposite direction to the main rotor's propulsive force.

Thus, the main rotor must also overcome the tail rotor thrust

in left sideward flight. Main rotor power is about 6 percent

more than for right sideward flight, as seen in Table 3.

Fuselage roll angle for left sideward flight is 6.9 degrees to

the left, which i1s about twice the magnitude of that present

to the right during right sideward flight.

COMPARISON BETWEEN MEASURED AND PREDICTED NORMAL FORCE

" COEFFICIENTS
o
X i ¢ e
For the steady state flight conditions, comparisons were made ;
between measured CN versus ¢ distributions and calculated ig!
values of CL' Fcr comparative purposes, the two parameters *

At

are approximately equal. These comparisons were made for
radial stations of r/R = 0.40, 0.75, 0.864, and 0.955.

e SR

LA

Hover
In hover, BHT's lifting surface hover performance program
(AR79DK) was used for calculating the CL distributions. This

analysis represents the state of the art in the prediction of
hover performance. The main features of the analysis are:

b s 3
.

- Lifting surface blade representation.

- Determination of blade section aerodynamic characteris-
tics through circulation response tailoring.

- Prescribed wake model coupled to blade circulation as
determined by an extensive experimental wake data base.

- Compressibility treated through similarity law geometry
transformation and airfoil data.

Figures 24 through 26 show the 8100-pound gross weight hover
records (number 723 and 736) at 100- and 50-foot altitudes, re-
spectively, and the 9000-pound record (number 685) at a 50-
foot altitude. 1Ideally, CN would be constant with azimuth, as
were the calculated values of CL' However, because of the
presence of light wind and fuselage influences, this situation
is never fully realized. In spite of the unsteadiness assocl-
ated with the measured data, the calculated results are in
reasonable agreement.

{ Tk
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Forward Flight 10, 20, 30, 40, and 50 Knots

For the forward flight comparison of the measured CN distri-

butions with blade element/momentum analysis, the calculated

C[, versus azimuth distributions were obtained using BHT's Rotor

Aerodynamic Characteristics Program (ARAM42). This program as-
sumes uniform inflow, and the flapping equation of motion is
solved iteratively for the specified flight condition. A
standard tip-loss factor is used based on the thrust coeffi-
cient and number of blades. For the clean 8100-pound gross
weight condition, a fuselage drag area of 12 square feet was
used, whereas for the 9000-pound "Hog Configuration," the
fuselage drag area was 15 square feet.

For the forward flight speeds of 10, 20, 30, 40, and 50 knots, A

correlation between the measured and calculated CN distri- -

butions (as shown in Figures 27 through 38) resulted in the
following generalizations. In the vicinity of the blade tip,
uniform inflow is insufficient in magnitude. Consequently,

the calculated CL versus azimuth is high compared to the CN

versus azimuth distribution. Inboard of r/R = 0.75 uniform

inflow 1s excessive and the calculated CL versus azimuth is

low compared to the measured CN versus azimuth distribution.

=

These trends become less obvious as the forward flight speed

diminishes. In addition, the measured CN distributions,

particularly those at r/R = 0.864 and 0.955, show large fluc-
tuations in the region of ¢ = 90° and 270° azimuth due to
blade/vortex interactions. Calculated results using uniform
inflow neglect these fluctuations.

L i e

In an attempt to account for the tip vortex induced fluctua-
tions in the forward flight inflow, a distorted wake analysis

(ARAPMWK) was used to calculate the resultant CL distributions.

Comparisons were made only for 40- to 50-knot, 8100-pound cases
(records 727 and 728). Lower speed comparisons were not pos-
sible because of the numerical problems associated with the
free-wake analysis. Figures 33 and 35 show the calculated
distorted wake CL distributions relative to the test data. In
both cases the calculated CL fluctuations due to the vortex
interaction occur where expected, but are much greater in
magnitude than those measured. A visual representation of the
‘ wake relative to the rotor as calculated by ARAPMWK for the
50-knot case is shown in Figure 39.
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